Math **M1:** Make sense of problems and persevere in solving them M2: Reason abstractly & quantitatively M6: Attend to precision M7: Look for & make use of structure M8: Look for & make use of regularity in repeated reasoning E6: Use technology & digital media strategically & capably **M5:** Use appropriate tools strategically ## Science M4. Models with mathematics S2: Develop & use models **S5:** Use mathematics & computational thinking **E2:** Build a strong base of knowledge through content rich texts **E5:** Read, write, and speak grounded in evidence M3 & E4: Construct viable arguments and critique reasoning of others **S7:** Engage in argument from evidence **S1:** Ask questions and define problems **S3**: Plan & carry out investigations S4: Analyze & interpret data **S6:** Construct explanations & design solutions s8: Obtain, evaluate, & communicate information E3: Obtain, synthesize, and report findings clearly and effectively in response to task and purpose Commonalities Among the Practices in Science, Mathematics and English Language Arts Based on work by Tina Chuek ell.stanford.edu **E1:** Demonstrate independence in reading complex texts, and writing and speaking about them **E7:** Come to understand other perspectives and cultures through reading, listening, and collaborations ELA | Practices in Mathematics, Science, and English Language Arts* | | | |--|--|--| | Math | Science | English Language Arts | | M1. Make sense of problems and persevere in solving them. | S1. Asking questions (for science) and defining problems (for engineering). | E1. They demonstrate independence. | | M2. Reason abstractly and | S2. Developing and using models. | E2. They build strong content knowledge. | | quantitatively. M3. Construct viable arguments and critique the reasoning of others. M4. Model with mathematics. | S3. Planning and carrying out investigations.S4. Analyzing and interpreting data.S5. Using mathematics, information and computer technology, and computational thinking. | E3. They respond to the varying demands of audience, task, purpose, and discipline.E4. They comprehend as well as critique. | | M5. Use appropriate tools strategically.M6. Attend to precision. | S6. Constructing explanations (for science) and designing solutions (for engineering). | E5. They value evidence. E6. They use technology and digital media strategically | | M7. Look for and make use of structure. | S7. Engaging in argument from evidence. | and capably. E7. They come to | | M8. Look for and express regularity in repeated reasoning. | S8. Obtaining, evaluating, and communicating information. | understanding other perspectives and cultures. | ^{*} The Common Core English Language Arts uses the term "student capacities" rather than the term "practices" used in Common Core Mathematics and the Next Generation Science Standards.